Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We show that the cobordism maps on Khovanov homology can distinguish smooth surfaces in the 4-ball that are exotically knotted (i.e., isotopic through ambient homeomorphisms but not ambient diffeomorphisms).We develop new techniques for distinguishing cobordism maps on Khovanov homology, drawing on knot symmetries and braid factorizations.We also show that Plamenevskaya’s transverse invariant in Khovanov homology is preserved by maps induced by positive ascending cobordisms.more » « less
-
This paper investigates the exotic phenomena exhibited by links of disconnected surfaces with boundary that are properly embedded in the 4-ball. Our main results provide two different constructions of exotic pairs of surface links that are Brunnian, meaning that all proper sublinks of the surface are trivial. We then modify these core constructions to vary the number of components in the exotic links, the genera of the components, and the number of components that must be removed before the surfaces become unlinked. Our arguments extend two tools from 3-dimensional knot theory into the 4-dimensional setting: satellite operations, especially Bing doubling, and covering links in branched covers.more » « less
-
From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list.more » « less
-
We study the generalization of quasipositive links from the 3-sphere to arbitrary closed, orientable 3-manifolds. Our main result shows that the boundary of any smooth, properly embedded complex curve in a Stein domain is a quasipositive link. This generalizes a result due to Boileau and Orevkov, and it provides the first half of a topological characterization of links in 3-manifolds which bound complex curves in a Stein filling. Our arguments replace pseudoholomorphic curve techniques with a study of characteristic and open book foliations on surfaces in 3- and 4-manifolds.more » « less
-
We resolve parts (A) and (B) of Problem 1.100 from Kirby’s list [Problems in low-dimensional topology, inGeometric topology, AMS/IP Studies in Advanced Mathematics, vol. 2 (American Mathematical Society, Providence, RI, 1997), 35–473] by showing that many nontrivial links arise as cross-sections of unknotted holomorphic disks in the four-ball. The techniques can be used to produce unknotted ribbon surfaces with prescribed cross-sections, including unknotted Lagrangian disks with nontrivial cross-sections.more » « less
An official website of the United States government
